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ABSTRACT

The conditions for a sequence of polynomials to have only real zeros based
on the method of interlacing zero was investigated by Lily L. Liu and Yi
Wang. In this paper we will find new conditions for a combination of
real polynomials, continues to have only real zeros based on the method
of interlacing zero.
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1. Introduction

Polynomials with only real zeros arise often in combinatorics and other
branches of mathematics.We refer the reader to the survey papers by Wang and
Yeh (2005) and Liu and Wang (2007) for various result for polynomials to have
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only real zeros. FollowingWagner (1992), letRZ = {P (x) ∈ R[x];P (x) has only real zeros}
.Suppose that f, g ∈ RZ. Let {ri} and {sj} be all zeros of f and g in non-
increasing order respectively.We say that g alternates f if deg f = deg g = n
and

sn ≤ rn ≤ sn−1 ≤ . . . ≤ s2 ≤ r2 ≤ s1 ≤ r1. (1)

We say that g interlaces f if deg f = deg g + 1 = n and

rn ≤ sn−1 ≤ . . . ≤ s2 ≤ r2 ≤ s1 ≤ r1. (2)

The notation g � f denote either g alternates f or g interlaces f . If no
equality sign occurs in (1)(respectively (2)), then we say that g strictly alter-
nates f ( respectively g strictly interlaces f).Let g ≺ f denote either g strictly
alternates f or g strictly interlaces f . For notational convenience, let a � bx+c
for any real constants a, b, c and f � 0, 0 � f for any real polynomial f with
only real zeros.

We say that g l-alternates f if deg f = deg g + 2 = n+ 1 and

rn+1 ≤ rn ≤ sn−1 ≤ . . . ≤ s2 ≤ r2 ≤ s1 ≤ r1. (3)

If no equality sign occurs in (3), then we say that g strictly l-alternates f .

Let f and g be two real polynomials whose leading coefficients have the
same sign. Suppose that f and g have only real zeros and that g alternates f
or g interlaces f .Wang and Yeh (2005) found that the polynomial
(bx + a)f(x) + (dx + c)g(x) has only real zeros where ad ≥ bc. Liu and Wang
(2007) proved this following result.

Theorem 1.1. Let F, f, g be three real polynomials satisfying the following
conditions;
(a) F (x) = a(x)f(x)+ b(x)g(x) where a(x), b(x) are two real polynomials, such
thatdegF = deg f or deg f + 1,
(b) f, g ∈ RZ and g � f ,
(c) F and g have leading coefficients of the same sign,
(d) ∀r ∈ R, f(r) = 0⇒ b(r) ≤ 0.
Then F ∈ RZ and f � F . In particular, if g ≺ f and b(r) < 0 whenever
f(r) = 0, then f ≺ F .

They also gave a short and simple proof for this following result of Haglund
(2000).
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Theorem 1.2. Let f and g be two real polynomials with both positive leading
coefficients α and β respectively. Suppose that the following conditions are sat-
isfied;
(a) f , g ∈ RZ and g interlaces f ,
(b) F (x) = (ax+ b)f(x) + x(x+ d)g(x) where a, b, c, d ∈ R with d ≥ 0, d ≥ b/a
and either a > 0 or a < −β/α,
(c) All zeros of f are non-positive if a > 0 and nonnegative if a < −β/α.
Then F ∈ RZ. In addition, if each zeros r of f satisfies and −d ≤ r ≤ 0, then
f interlaces F .

Haglund (2000)used Theorem 1.2 to prove facts about rook polynomials in
graph theory. Srimud et al. (2011) proved a generalization of Theorem 1.2,
viz.,

Theorem 1.3. Let f and g be two real polynomials with both positive or neg-
ative leading coefficients α and β respectively. Suppose that the following con-
ditions are satisfied;

(a) f , g ∈ RZ and g interlaces f ,
(b) F (x) = (ax+b)f(x)+x(cx+d)g(x) where a, b, c, d ∈ R with a 6= 0, d ≥ bc/a.
(c) if a > 0, then all zero of f is nonpositive,
(d) if a < 0, then all zero of f is nonnegative.

Then F ∈ RZ. In addition,
if c > 0 and −d/c ≤ r ≤ 0 each zero r of f , then f interlaces F .
if c < 0 and r ≤ −d/c ≤ 0 each zero r of f , then f interlaces F .
if c = 0 and r ≤ 0 for each zero r of f , then f interlaces F .

It is natural to ask for other conditions ensuring positivity of coefficients.
Here, we derive analogous conditions for a family of such polynomials.

2. Main Results

Let

sgn(x) =


+1 , x > 0

0 , x = 0

−1 , x < 0
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Let f(x) be real function and write sgnf(+∞) = +1 and −1, respectively, if
sgnf(x) = +1 and −1 for sufficiently large x. Similar definition is given for
sgnf(−∞)

Our main result is

Theorem 2.1. Let F, f, g be three real polynomials satisfying the following
conditions;

(a) F (x) = a(x)f(x)+ b(x)g(x) where a(x), b(x) are two real polynomials, such
that b(x) 6≡ 0 and degF = deg f + 2,
(b) f, g ∈ RZ and g alternates f ,
(c) F and g have leading coefficients of the different sign,
(d) ∀r ∈ R, f(r) = 0⇒ b(r) ≥ 0,
(e) if f and g have leading coefficient of opposite sign, then a(s) < 0 where s
is a root of least value of g. If f and g have leading coefficients of the same
sign, then a(s) > 0 where s is a root of least value of g.

Then F ∈ RZ and f l-alternates F . In addition, if g strictly alternates f
and b(r) > 0 whenever f(r) = 0, then f strictly l-alternates F .

Proof. Let F, f, g be three real polynomials with degf = n, so degF = n + 2.
Since g alternates f, we have degg = degf = n. Since f, g ∈ RZ, there ex-
ists ri, sj ∈ R such that f(x) = k(x − r1)(x − r2) · · · (x − rn) and g(x) =
l(x− s1)(x− s2) · · · (x− sn), where 1 ≤ i, j ≤ n.
First, consider the case where g strictly alternate f and b(r) > 0 when-
ever f(r) = 0. Suppose that sn < rn < · · · < s2 < r2 < s1 < r1. Let
i ∈ {1, 2, . . . , n}, and let the leading coefficients of g be negative and leading
coefficients of F be positive. Since g(ri) = l(ri − s1)(ri − s2) · · · (ri − si)(ri −
si+1) · · · (ri − sn) , we have sgn g(ri) = (−1)i. Thus, F (ri) = a(ri)f(ri) +
b(ri)g(ri), and so sgn F (ri) = (−1)i. Since the leading coefficient of F is
positive, then sgn F (+∞) = +1 and sgn F (−∞) = (−1)degF = (−1)n+2.
By the Intermediate Value Theorem, there exist ui+1 ∈ (ri+1, ri) such that
F (ui+1) = 0 for all i, 1 ≤ i ≤ n−1. Then rn < un < rn−1 < · · · < r2 < u2 < r1.
Since sgnF (r1) = −1 and sgnF (+∞) = 1, then there exists u1 such that
r1 < u1.
Consider

F (sn) = a(sn)f(sn) + b(sn)g(sn),

= a(sn)f(sn),

= a(sn)k(sn − r1)(sn − r2) · · · (sn − rn).
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If k < 0 and a(sn) > 0, then sgnF (sn) = (−1)n+1.
If k > 0 and a(sn) < 0, then sgnF (sn) = (−1)n+1.
In both cases, we have sgnF (sn) = (−1)n+1, and so F (x) has two additional
zeros un+1, un+2 ∈ R in intervals (sn, rn) and (−∞, sn), i.e., un+2 < un+1 <
rn < un < rn−1 < · · · < u2 < r1 < u1, showing that f strictly l-alternate F .
For the general case, let bj(x) = b(x) + 1/j and Fj(x) = a(x)f(x) + bj(x)g(x).
Let j be sufficiently large. Then bj(ri) = b(ri) + 1/j > b(ri) ≥ 0 for all
i, 1 ≤ i ≤ n. Thus, Fj ∈ RZ and f strictly l-alternates Fj .
Since

Fj(x) = a(x)f(x) + bj(x)g(x),

= a(x)f(x) + (b(x) + 1/j)g(x),

= a(x)f(x) + b(x)g(x) + g(x)/j,

= F (x) + g(x)/j,

we have degFj = degF . Suppose that u(j)i be root of Fj for 1 ≤ i ≤ n+ 2.
Since f strictly l-alternates Fj , we get

u
(j)
n+2 < u

(j)
n+1 < rn < u(j)n < · · · < u

(j)
2 < r2 < u

(j)
1

Let F (x) = an+2x
n+2 + an+1x

n+1 + · · · + a1x + a0. and Fj(x) = a
(j)
n+2x

n+2 +

· · ·+ a
(j)
1 x+ a

(j)
0 .

We have

lim
j→∞

Fj(x) = lim
j→∞

(
F (x) +

g(x)

j

)
,

= lim
j→∞

(a
(j)
n+2x

n+2 + · · ·+ a
(j)
1 x+ a

(j)
0 ),

= lim
j→∞

(
an+2x

n+2 + (an +
ln
j
)xn + · · ·+ (a0 +

l0
j
)
)
,

where g(x) = lnx
n + ln−1x

n−1 + · · ·+ l0. Thus, limj→∞ a
(j)
i = limj→∞ ai .

Note that the zeros of a polynomial are continuous function of coefficients of
the polynomial, i.e.,

lim
j→∞

r
(j)
i = h

(
lim
j→∞

a
(j)
0 , · · · , lim

j→∞
a
(j)
n+2

)
,

= h(a0, a1, · · · , an+2),

= ri ,when r(j)i are the roots of Fj(x)

Thus, un+2 ≤ un+1 ≤ rn ≤ un ≤ rn−1 ≤ · · · ≤ u2 ≤ r1 ≤ u1. Hence f l-
alternates F .
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If the leading coefficients of g be positive and leading coefficients of F be
negative, , we have sgng(ri) = (−1)i−1 for all 1 ≤ i ≤ n, and so sgnF (ri) =
(−1)i−1. Since the leading coefficient of F is negative and degF = n + 2, we
have sgnF (+∞) = −1 and sgnF (−∞) = (−1)n+3 = (−1)n+1.
By the Intermediate Value Theorem, there exist ui+1 ∈ (ri+1, ri) such that
F (ui+1) = 0 for all i, 1 ≤ i ≤ n−1. Thus, rn < un < rn−1 < · · · < r2 < u2 < r1.
Since sgnF (r1) = 1 and sgnF (+∞) = −1, then there exists u1 such that
r1 < u1.
Consider

F (sn) = a(sn)f(sn) + b(sn)g(sn),

= a(sn)f(sn),

= a(sn)k(sn − r1)(sn − r2) · · · (sn − rn).

If k < 0 and a(sn) < 0,then sgnF (sn) = (−1)n.
If k > 0 and a(sn) > 0,then sgnF (sn) = (−1)n.
In both cases, we have sgnF (sn) = (−1)n, and so F (x) has two additional zeros
un+1, un+2 ∈ R in intervals (sn, rn) and (−∞, sn), i.e., un+2 < un+1 < rn <
un < rn−1 < · · · < u2 < r1 < u1, showing that f strictly l-alternate F .

The case where b(r) ≥ 0whenever f(r) = 0 can be proved in the same
manner. We end our discussion with an example an a corollary.

Example 2.1. Let a(x) = x(x + 2), f(x) = 2x(x − 2), b(x) = x2 and g(x) =
−(x− 1)(x+ 1). Here,

F (x) = a(x)f(x) + b(x)g(x)

= x(x+ 2)2x(x− 2) + x2(−(x− 1)(x+ 1))

= 2x2(x2 − 4)− x2(x2 − 1)

= x2(2x2 − 8− x2 + 1)

= x2(x2 − 7).

The roots of F are 0, 0,
√
7,−
√
7 and satisfy

−
√
7 < 0 ≤ 0 ≤ 0 < 2 <

√
7

, i.e., F ∈ RZ and f l-alternates F .

Corollary 2.1. Let F, f, g be three real polynomials satisfying the following
conditions;
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(a) F (x) = a(x)f(x)+ b(x)g(x) where a(x), b(x) are two real polynomials, such
that b(x) 6≡ 0 and degF = deg f + 2,
(b) f, g ∈ RZ and g alternates f ,
(c) F and g have leading coefficients of the different sign,
(d) ∀r ∈ R, f(r) = 0⇒ b(r) ≥ 0,
(e) if f has positive leading coefficient, then a(s) < 0 where s is a root of least
value of g and if f and g has negative leading coefficients, then a(s) > 0 where
s is a root of least value of g.

Then F ∈ RZ and f l-alternates F . In addition, if g strictly alternates f
and b(r) < 0 whenever f(r) = 0, then f strictly l-alternates F .

Proof. The proof is similar to that of Theorem 2.1
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